I have a tremendous idea for a new biosolids research
project, but first….
It was no big surprise that one of my wife’s Christmas gifts
to me was Gut:
The Inside Story of our Body's Most Underrated Organ. I have displayed at home, as well as in
my biosolids commentaries, an abnormally high interest in the human gut
microbiome. To my delight, this book,
translated from German and written by Giulia Enders, a young female,
award-winning, Ted-talk-giving, science writer, is a breezy and comprehensive
work. It is, as Amazon says, a “beguiling manifesto.”
Clearly, one of its main messages is that the health of the
human gut microbiome effects the health and well-being of its host, that is you
and me. I checked with Amazon, and Ender’s
“gut” book shares the virtual bookshelves with a whole host of similar titles,
also drawing on the connection between happy microbes and happy people: The
Microbiome Cookbook: 150 Delicious Recipes to Nourish your Microbiome and
Restore your Gut Health, The
Mind-Gut Connection: How the Hidden Conversation Within Our Bodies Impacts Our
Mood, Our Choices, and Our Overall Health,
The
Good Gut: Taking Control of Your Weight, Your Mood, and Your Long-term Health
This flurry of book is all very new, each book printed in
2016.
Then the news services on January 3rd reported that a new
organ had been uncovered in the human body, one connected to the intestines,
and called the “mesentery.” Another young female science writer with Live Science, Sarah G. Miller, wrote the
article Gut
Decision: Scientists Identify New Organ in Humans: “scientists can now focus on learning more
about how the organ functions, Coffey said. In addition, they can also learn
about diseases associated with the mesentery, he added.”
I can confidently assert that we will be hearing a lot about
gut flora over the next decade, and we should take note of this for our work
with biosolids, particularly for the positive connection between microbial
communities and human health. A major research question was which gut microbes caused
major gastrointestinal illnesses, such as Crohn’s Disease and ulcerative
colitis, in hope of an easy path for medical control. But the nature of gut
ecosystems was too complex for a simple answer. Instead researchers turned to the
question how the gut ecosystem actively keeps us all healthy,
particularly when so many species of gut microbes are known human pathogens.
Over the past several years, journal articles have addressed
these questions:
·
Does choice of foods affect the microbiome?
Well, yes, at least in part (Long‐term
monitoring of the human intestinal microbiota composition).
·
Does use of antibiotics alter the gut flora?
Well, yes, at least in part (Diversity,
stability and resilience of the human gut microbiota).
·
Does consuming daily doses of probiotics alter
the gut flora? Well, yes, at least in part (Intestinal
microbiota in human health and disease: the impact of probiotics).
·
Is obesity influenced by gut flora? Yes, at
least in part (Linking
the gut microbiota to human health).
·
Can gut flora really influence an individual’s
emotional well-being? Well, yes, at least in part (Better
living through microbial action: the benefits of the mammalian gastrointestinal
microbiota on the host).
Wow! Who would have guessed that our health and well-being
is really the result of our wonderful gut flora?
I realized in reading these reports that I had only a foggy
idea of what comprised the human gut flora.
We are all familiar with E coli
as an important class of bacteria, but its distinction for us is not in its
role in the human microbiome but its choice as an indicator of environmental
contamination. And, as it turns out, it
is not a particularly good indicator at that.
Escherichia coli is just one species
in a large class of protobacteriods,
a group that together makes up perhaps a quarter of the 3 trillion microbes in
the adult human gut. E coli’s role is
relatively small in the gut, but its presence in activated sludge treatment
works turns out to be very significant, which is one reason (along with its easy
culturability in the laboratory) we know so much about it, why we track it, and
why we regulate it.
But we are learning of far more important microbes. One particularly interesting microbial group
in the gut is called Lachnospiraceae. Besides its very dominant role in the gut
flora in a class of organisms called the Firmicutes, this group is interesting
because it connects to my next topic, the sewerage system. One young, female professor
in Wisconsin, Sandra L.
McLellan, has emerged as a leader in researching the unique microbial
ecosystem of sewers. She has identified the class of bacteria Lachnospiraceae as a robust indicator of
human fecal waste, occurring in the human gut and in the sewer, and being
distinct from microbes from other animal and environmental sources. Check out her paper, Sewage
reflects the distribution of human faecal Lachnospiraceae, showing that public
sewers fed with human-sourced food are the habitat for unique microbial
communities, and this one microbe class that can be readily tracked, the Lachnopriracea. You heard it here first.
Just as we are on the early part of the learning curve of
the microbial communities of sewers, the same is true with biosolids
itself. This brings me to Kyle Bibby’s
work while a PhD student at Yale University, where he characterized the biota
of different biosolids products. In his
paper, Pyrosequencing
of the 16S rRNA gene to reveal bacterial pathogen diversity in biosolids,
his intention is to clarify the potential array of pathogenic organisms,
viruses as well as bacteria, that may be present in biosolids. But his work necessarily
included a broader survey of microbial.
He discovered that different processes, such as aerobic versus
mesophilic anaerobic digestion vs composting, resulted in biosolids with microbial
ecosystems common within processes but different between processes. Wastewater plants grow out of the influent
food and microbes different biosolids-based microbial communities, each
characteristic of treatment facility processes.
In his presentation to the MABA Annual Symposium, The
role of microbes on soil health and questions for biosolids research, Dr.
Jeffrey Buyer had covered Bibby’s work, but then extended the conversation to
the effects of biosolids on soil microbial communities. He summarized soils
research that showed many soil communities are stable, just as in the human
gut, and that additions of various organic feedstocks, biosolids along with
manures, help to push around, but not to fundamentally change, those soil microbial
communities. Where we humans might eat a
carton of Greek yogurt for our daily dose of probiotics, our annual application
of biosolids may do the same for a healthy soil. Biosolids microbial communities make soils
happy.
Dr. Buyer’s presentation this past November reminded me that
Dr. Xunzhong Zhang at Virginia Tech, made a presentation to the 2013 MABA
Annual Symposium, “Biostimulants
Released from Biosolids have impact on Crop Stress Tolerance and Yield.” Dr. Zhang showed that biosolids release auxins
and stimulate soil microbes to do the same, which together significantly
increase crop growth. He shows that biosolids makes for happy soil microbes, in
turn making plants happy.
So where have I gone with this? Our historical engagement with
biosolids microbes has largely been in what goes wrong in controlling pathogen
indicators in our treatment processes or where their presence in the
environment is a marker for pollution. Instead, what we are learning, starting
with the human microbiome, is how critical complex microbial communities are
for health -- the health of our bodies, the health of transformative processes
in sewers, the health of our activated sludge treatment systems, and in the health-giving
properties of biosolids for plant growth.
The analytical tools are at hand and affordable, and only
our imagination limits the questions we can ask. This is my research
question. What attributes of biosolids
microbial communities contribute most to a positive growth response in plants,
and how can we design our treatment plant equipment to optimize those
attributes? Instead of “high quality
biosolids” research focusing mainly on attributes of odor, aesthetics, and
handleability that influence human sensibilities, let’s look at biosolids from
the viewpoint of the healthy plant. That
would be a worthy research project. At least, that is what my gut tells
me!
No comments:
Post a Comment